出國報告(出國類別:考察)

日本淨零排放轉型成效考察報告

服務機關:監察院

姓名職稱:副院長 李鴻鈞

監察委員 葉宜津

監察委員 蕭自佑

監察委員 賴鼎銘

監察委員 林郁容

監察委員 林盛豐

監察委員 張莉芳

監察調查處調查專員 劉宜華

監察調查處調查專員 廖千慧

派赴國家:日本

出國期間:111年11月28日至12月2日

報告日期:112年1月18日

目次

壹	`	前	言																						- 1
貳	`	考	察	重	點	及	行	程																	- 1
	_	`	考	察	重	點																			- 1
	=	`	考	察	重	點	及	行	程																- 2
參			考》																						- 2
	_	`	日	華	議	員	懇	談	會	(詹	負利	爯 E	日華	车系	艮)	會	長	古	屋	圭	司	拜	會	所	
			得	內	容																				- 2
	二	`	日	本	國	會	議	員	拜	會	所	得	內	容											- 5
	三	`	庄	和	排	水	泵	浦	站	()	又禾	再厚	方分	炎坛	也了	下市	申屏	殳)							10
	四	`	豐	田	汽	車	公	司	及	巖	谷	芝	公	園	加	氫	站	考	察	所	得	內	容	_	12
	五	`	日	立	柏	之	葉	智	慧	城	市	考	察	所	得	內	容								18
肆	`	考	察	心	得	與	建	議																	26
	_	`	近	年	自	動	駕	駛	科	技	已	成	為	世	界	各	國	發	展	之	重	點	,	日	
			本	因	應	無	人	自	動	駕	駛	所	研	擬	之	相	關	立	法	政	策	,	可	作	
			為	我	國	推	行	自	動	駕	駛	及	修	法	之	參	考								26
	<u>_</u>	`	日	本	於	全	國	地	方	優	先	推	行	自	動	駕	駛	汽	車	實	驗	,	藉	由	
			自	動	駕	駛	技	術	提	升	高	龄	駕	駛	之	安	全	及	行	動	便	利	性	,	
			我	國	已	進	入	高	龄	社	會	且	高	龄	化	時	程	較	世	界	各	國	快	速	
			,	日	本	作	法	尚	值	我	國	參	考	借	鏡										27
	三	`	日																						
			術	仍	處	研	發	與	示	範	階	段	,	同	屬	天	然	資	源	貧	瘠	國	家	,	
			日	本	作	法	殊	值	我	國	學	習													28
	四	`	氫																						
			加	氫	站	設	置	•	氫	能	運	送	及	現	場	作	業	人	員	安	全	規	範	等	
			作	法	,	可	供	我	國	參	考	應	用												29
	五	`	日																				_		
								率																	
								•																	30
					_	-																			

六、日本整備「首都圈外圍排水道」之後,大幅減輕侵水災害,顯著發揮了減洪減災的功效,面對極端氣候常態化及其產生的災害日漸嚴峻,我國亦應加快提升整體防洪及保護的能力-----31

圖目次

圖	1	首	都	圈	外	圍	排	水	道	主	要	機	制	圖					 	 11
圖	2	豐	田	電	動	車	輛	核	<i>ن</i>	技	術	示	意	圖					 	 12
圖	3	豐	田	氫	燃	料	電	池	電	動	車	示	意	圖					 	 12
圖	4	豐	田	氫	燃	料	電	池	電	動	車	發	展	歷	程				 	 13
圖	5	豐	田	第	二	代	氫	能	源	車	ΜI	RA	Ι-						 	 13
圖	6	豐	田	第	_	代	氫	能	源	車	續	航	力						 	 13
圖	7	豐	田	第	_	代	氫	能	源	車	成	本						- — —	 	 13
圖	8	豐	田	第.	二亻	弋氫	氫創	三 源	車	サ	7率	密	度						 	 13
圖	9	氫	燃	料	電	池	技	術.	之	潛	在	作	用						 	 14
圖	10		氫	燃	料	電	池	技	術	之	應	用							 	 14
圖	11		巖	谷	芝	公	園	加	氫	站								- — —	 	 15
圖	12		氫	燃	料	電	池	車	氫	能	轉	换	動	力	示	意	圖		 	 16
圖	13		氫	能	基	本	策	略	計	畫									 	 16
圖	14		柏	之	葉	智	慧	城	市	建	構	方	向						 	 19
圖	15		柏	之	葉	智	慧	城	市	整	體	構	想						 	 19
圖	16		柏	之	葉	智	慧	城	市	發	展	特	點						 	 20
圖	17		柏	之	葉	智	慧	城	市	協	創	概	要						 	 20
圖	18		柏	之	葉	智	慧	城	市	的	特	點						- — —	 	 21
圖	19		柏	之	葉	品	域	能	源	管	理	系	統	之	特	點			 	 21
圖	20		柏	之	葉	區	域	能	源	管	理	糸	統	的	價	值		- — —	 	 21
圖	21		柏	之	葉	智	慧	城	市	使	用	可	再	生	能	源		- — —	 	 22
圖	22		柏	之	葉	智	慧	城	市	可	持	續	設	計	示	意	圖		 	 22
-	23																			22
圖	24		柏	之	葉	智	慧	城	市]	LE	ED	-N	D -						 	 23

照片目次

照片	1	本考察團與日華懇會長古屋圭司互贈禮品及合影	5
照片	2	111年11月29日本考察團與安倍晉三之弟、岸信夫	
	合	影	- 7
照片	3	111/12/01本考察團與參議院山東昭子前議長合	
	影		8
照片	4	111/12/01本考察團與蓮舫參議員等人合影	8
照片		111/12/01本考察團與前原誠司眾議員互贈禮品	
	及	合影	- 9
照片	6	111/12/01本考察團與石破茂眾議員合影	- 9
照片	7	111/12/01本考察團與維新黨代表馬場伸幸合影]	0 ا
照片	8	111/11/30本考察團於東京地下神殿合影]	1
照片	9	111/11/30本考察團於巖谷芝公園加氫站旁Mirai	
	Sh	owroom合影]	17
		巖谷芝公園旁加氫站]	
照片	11	汽車加氫情形]	8
照片	12	解說柏之葉智慧城市模型2	25
照片	13	柏之葉智慧城市電力消費及融通情形2	25
照片	14	111/12/01本考察團與柏之葉智慧城市業務主管	
	合	影2	26

壹、前言

全球暖化問題已產生並增加多種氣候危害,對此, 聯合國氣候變化綱要公約第26次締約方大會(UNFCCC COP26)呼籲各締約方應採取更為急迫之氣候行動,將全 球溫室氣體排放量在2030年前減半,並在2050年達到淨 零,以因應全球氣候緊急之高風險衝擊。部分國家及地 區已陸續提出「2050淨零排放」的宣示與行動,為共同 承擔全球目標,我國亦將2050淨零排放入法規引領未來 中長期因應衝擊之氣候行動。

本院於民國(下同)110年曾就新興水資源之開發與利用現況、政府推動綠運輸成效等情,分別進行通案性調查及研究,發現政府雖如火如荼展開淨零排放有關規劃,並於2022年3月20日提出「臺灣2050淨零排放路徑及策略總說明」,展現落實淨零轉型之長期願景的決心,然而淨零轉型涵蓋能源、產業、生活及社會等層面,在轉型過渡的期間,需要整個國家總動員,共同處理所有重要的議題,克服各項挑戰,政府仍應更為努力。

有鑒於日本與我國民情相似,且據彭博新能源財經於2021年初整理之「G20零碳政策評比」報告,評估19個國家在電力、化石燃料脫碳、運輸、建築、工業和循環經濟等6大領域的「穩健性」,日本要居綜合評分的前5名。再者,日本長年研發氫能源及發展氫燃料電池車輛,目前技術位居世界之冠,亦積極推行自動駕駛汽車實驗,並結合官方、企業及民間力量建立智慧城市等作為,應可提供我國未來推動淨零轉型之參考,爰副院長李鴻鈞及監察委員葉宜津、蕭自佑、賴鼎銘、林郁容、林盛豐、張菊芳率協查人員劉宜華、廖千慧至日本考察。

貳、考察重點及行程:

一、考察重點:

(一)日本研發氫能源及推動氫燃料電池車輛現況。

- (二)日本推行自動駕駛實驗及其道路交通事故責任規 範情形。
- (三)日本推動智慧城市之作法及成效。
- (四)日本對於水資源防災作為及成果。

二、考察重點及行程:

本次赴日訪查行程自111年11月28日至12月2日共計5日,除搭機及交通等必要行程,共計拜會、訪查12個機構或對象,並由駐日代表處陳珈儀秘書陪同前往,茲將行程概要列如下表:

表1 111年11月28日至12月2日本訪查行程表

ker									
時段	拜會機構/對象								
上午至	搭機前往日本								
下午									
上午	日華議員懇談會會長古屋圭司								
中午	內閣總理大臣補佐官岸信夫								
下午	應拜會單位要求不對外公開								
上午	庄和排水機場 (防災地下神殿)								
下午	豐田東京辦公室、巖谷芝公園加氫站								
上午至	1. 參議院前議長山東昭子								
中午	2. 蓮舫參議員								
	3. 前國土交通大臣前原誠司眾議員								
	4. 前防衛大臣石破茂眾議員								
	5. 維新黨代表馬場伸幸眾議員								
下午	日立柏之葉智慧城市								
上午至	搭機返回臺灣								
下午									
	上下上中下上下上中下上午至								

參、考察發現:

- 一、日華議員懇談會(簡稱日華懇)會長古屋圭司拜會所得 內容:
 - (一)自動駕駛汽車(又稱無人駕駛汽車):

無人自動駕駛共分成5級,第1級至第2級的事故 責任歸屬於駕駛,第3級至第5級的道路交通事故責 任歸屬於製造商。日本在第3級自動駕駛已有相關 的技術,之後的目標是推動第4級,將優先從地方 做大型的實驗。第5級是完全自動駕駛,目前尚無 何時實施的具體規劃。

另外,日本鐵路營運赤字嚴重,95條鐵路就存在93條虧損,在地方尤為明顯,但是鐵路對於地方的民眾而言,就如同雙腳一樣重要,可是搭乘人數少,營運容易產生虧損。若是政府不經營鐵路,就可減少營運虧損,若改為無人自動駕駛就可以降低鐵路營運成本,會長個人從這個觀點來看,是贊成推動無人自動駕駛,這個想法與其他議員不同。

針對本團提出自動駕駛發生道路交通事故責任 之法規範情形,古屋圭司會長回應,第1級到第2級 的自動駕駛是藉助輔助系統,例如煞車、警示音等設備,若發生交通事故,責任在駕駛本身。至於第 3級以上的自動駕駛,日本、美國等國家係將事故 責任歸屬於廠商,但有些國家則是朝向由保險制度 來承擔部分事故責任,最近也有慢慢在轉型,例如 Toyota、 Google採合作的案例。

另外,自動駕駛系統分為三種,第一種是透過 三角錐引導自動駕駛,第二是藉助GPS技術,第三 是藉助衛星導航,目前日本有6台衛星。目前在 方推動的自動駕駛汽車,是以三角錐引導為主,並 由製造商持續維護這些設備。而豐田汽車公司已 看到未來不能單靠無人自動駕駛,營運需要多 化、多元製造,企業才能永續經營,豐田汽車公司 為進行實驗,已在富士山下建置未來城市「Woven City」,不僅車輛皆為無人自動駕駛,家電亦全部 自動化運作。

(二)電動車輛:

為實現聯合國宣布全球邁向永續發展之目標, 許多國家開發電動車輛。歐洲有一半車輛使用柴 油,但柴油車要降低二氧化碳排放量很難,因此歐 盟決定在2040年前全面禁止銷售柴油車,就是要普 及電動車輛。

中國北京、上海等東邊城市面臨嚴重空污問題,中國努力要解決這個空問題,也致力於開發電動車輛,但電動車輛並非全部都環保,因為需要供電,而設置發電站並不環保。中國有龐大的土地,選擇在西側蓋發電廠,其想法是這樣不會影響北京的空氣,但車輛排碳總量並沒有因此減少。

發展電動車輛有一致命弱點,就是車輛在開發中國家製造,如此日本及一些已開發國家就會面臨

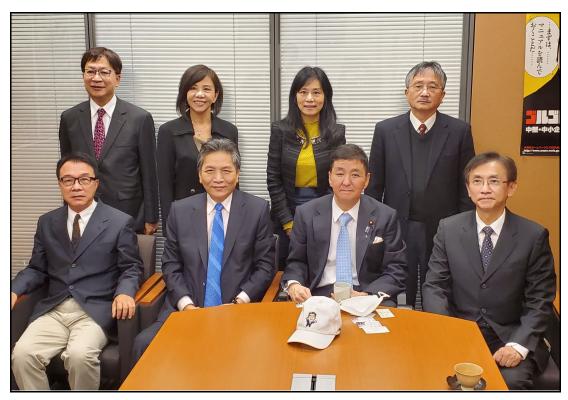
人民失業的問題。日本用了60年開發潔淨引擎車,環境與汽車產業如同金字塔的關係,而花了20年開發特斯拉,其股票卻比豐田汽車公司還要高。會長個人認為,為保護日本車輛產業,必須宣廣潔淨引擎車,才能保護日本金字塔型的車輛產業。

另一個關鍵是生質燃料,日本正致力於合成環保燃料,研發不會排出二氧化碳的車輛,這個技術開發非常重要。為了實現這個目標,日本政府邀請台積電在熊本設廠。日本為維持穩定供應能源及人力,政府投入大量的資金,未來在經濟安全上台日將會有很多的合作。

(三)會晤情形:

照片1 本考察團與日華懇會長古屋圭司互贈禮品及合影

二、日本國會議員拜會所得內容:


(一)本團於111年11月29日拜會內閣總理大臣補佐官岸信夫,同年12月1日拜會參議院前議長山東昭子、蓮舫參議員、前國土交通大臣前原誠司眾議員、前防

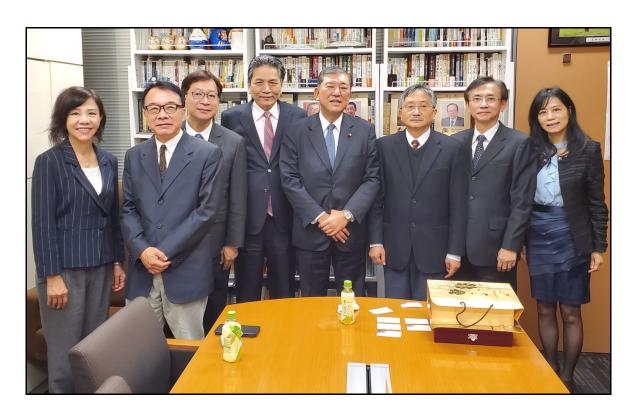
衛大臣石破茂眾議員,以及維新黨代表馬場伸幸眾 議員,就日本政府對於淨零排放之方向及作法,進 行交流與互動,會晤訪談摘要如下:

- 1、氣候變遷及永續發展是國際潮流,要達此目標, 單靠政府是不夠的,仍須藉助企業的力量,因此 如何創造官、民、企業合作是日本政府重要的課 題,而未來企業要獲得競爭力,應自主將永續發 展納入企業永續經營的目標。
- 2、日本在永續發展的政策,以往是緩慢進行,現在 應該加緊腳步。
- 3、日本發展氫能已有許多年,但是民眾仍質疑氫能容易爆炸,政府持續透過宣導氫能是項新技術,且是安全的。豐田汽車公司已開發氫燃料電池車,相信購車的人愈多,民眾就會愈來愈接受氫能。目前地方也開始利用太陽光分解、製造潔淨的氫能。
- 4、低碳中和,用氫能發電,已逐漸在進行,現在電力公司也已將部分供電改用氫能,但目前尚無僅靠氫能就可運作的設備。另外,在安全上,首要考量的是現場作業人員的安全,假如發生爆炸等情形,應制定指導現場工作人員安全的相關法規範。
- 5、日方已設立2兆日圓綠色資源基金,主要供應研發 氫能源、合成燃料不排放二氧化碳,10年間期以 透過發行國債來投資研發,著重發展潔淨能源, 並由國家主導及推動綠色能源。
- 6、氫能源的研發成本較高,目前面臨的課題是如何增加使用氫能的機器設備,日本設定2040年或2050年能增加2,000萬噸氫能的使用,並以氫能價格是目前價格的五分之一為目標。

- 7、其他如太陽能、風力等能源,易受天氣影響,若 不足使用時則由汽油來補充,但氫能不會受到天 候影響,若真的能單靠氫能來供電,則如同火力 發電一樣可以隨時調整產量,符合實際需要,如 此將改變產業型態,氫能技術的發展,對於日本 有安全上保障,不用再從國外進口石油。
- 8、日本開發氫能技術被譽為世界第一,未來期建立 氫能社會,除實現氫能社會外,也要將氫能推廣 至全球。

(二)會晤情形:

照片2 111年11月29日本考察團與安倍晉三之弟、岸信夫合影


照片3 111/12/01 本考察團與參議院山東昭子前議長合影

照片4 111/12/01 本考察團與蓮舫參議員等人合影

照片5 111/12/01 本考察團與前原誠司眾議員互贈禮品及合影

照片6 111/12/01 本考察團與石破茂眾議員合影

照片7 111/12/01 本考察團與維新黨代表馬場伸幸合影

三、庄和排水泵浦站(又稱防災地下神殿):

- (一)東京首都外圍排水道是將倉松川、大落古利根川等中小型河川的洪水導入地下,通過貫穿於地底50m處、全長6.3km的隧道後匯入江戶川,堪稱為全球最大規模的地下排水道,匯聚了日本最先進土木技術,該工程於1993年3月開始施工,歷經約13年時間,2006年6月終於將大落古利根川至江戶川之間完全開通。
- (二)庄和排水泵浦站係由地下排放洪水的「排水泵」與「控制室」、「排水暗渠」等構成,其主要承擔兩項作用,首先藉助大型水泵和排水暗渠,將經由地下隧道流入調壓水槽的河水排放進江户川。其次工作人員可以通過泵站的控制室,對各引流装置進行所需調控,實施統一管理,以確保防洪系统安全運作。換言之,首都圈外圍排水道的主要功能集中在排水泵浦站裡。

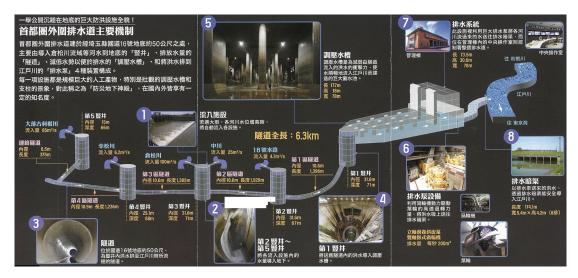


圖1 首都圈外圍排水道主要機制圖

(三)而調壓水槽的巨大空間如同「地下神殿」,是為了減弱由地下隧道流過來的水勢,使洪水能夠順暢流入江戶川,因此在地下約22m處建造長177m、寬78m、高18m的巨大蓄水池。其具有使排水泵穩定運轉的功用,以及在緊急停止時調節劇烈水壓變化的功用,並設計多達59根長7m、寬2m、高18m,重500t的支柱,以支撐蓄水池的牆頂。

(四)實地履勘情形:

照片8 111/11/30 本考察團於東京地下神殿合影

四、豐田汽車公司及巖谷芝公園加氫站考察所得內容:

- (一)豐田汽車公司東京辦公室:
 - 1、氫燃料電池電動車:
 - (1) 電動車輛核心技術:

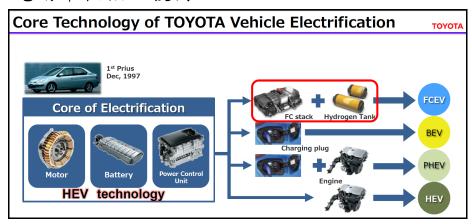


圖2 豐田電動車輛核心技術示意圖

(2) 氫燃料電池電動車(FCEV)發展歷程:

氫燃料電池電動車(Fuel Cell Electric Vehicle, FCEV)¹之動力來自於車上儲存的氫氣與燃料電池進行化學反應,產生電力以驅動馬達,行駛過程中僅排放水,被稱為「終極環保車輛」。

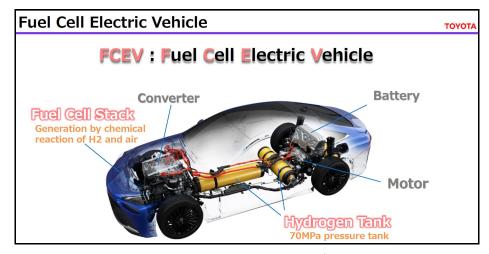


圖3 豐田氫燃料電池電動車示意圖

[「]豐田官網https://www.toyota.com.tw/electrified/FCEV/

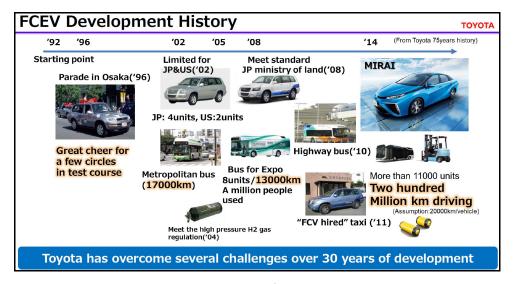
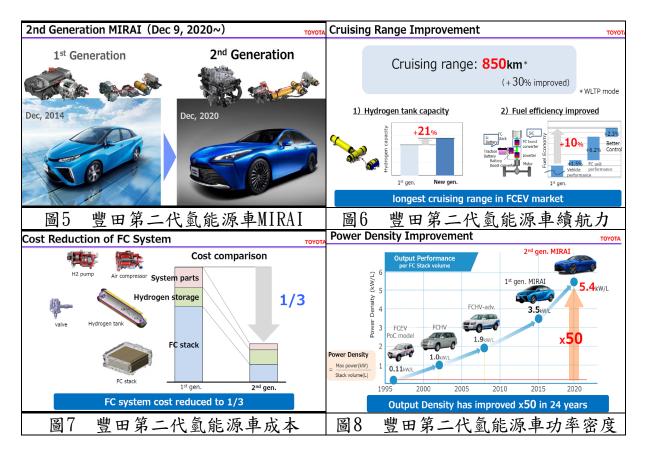



圖4 豐田氫燃料電池電動車發展歷程

(3) 豐田汽車公司於2014年發表第一代氫燃料電 池汽車Mirai,2020年發表第二代Mirai,續航 力可達850公里,目前為全球最高,燃油效率較 第一代增加10%、儲氫提高21%,功率增加,成 本僅為第一代的1/3。

(4) 氫燃料電池之應用:

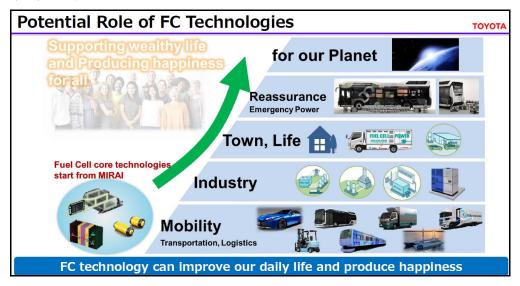


圖9 氫燃料電池技術之潛在作用

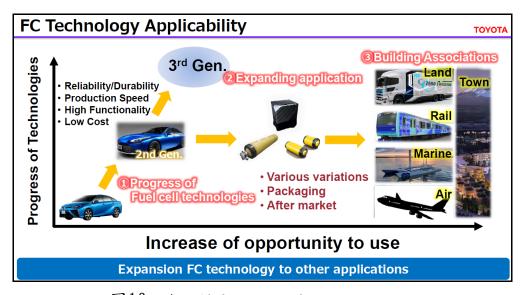


圖10 氫燃料電池技術之應用

2 · Toyota Woven City:

- (1) Woven City位於前豐田汽車公司東日本東富士 工廠舊址裾野市,是豐田汽車公司將汽車製造 (工藝)與最新技術相結合的方式。
- (2) Woven City是一個流動性測試課程,將對可擴展移動性和釋放人類潛能的系統和服務進行新想法的試驗,期能構建未來的城市生活結構。
- (3) Woven City將以多種類型的地上與地下,以人

為中心的移動和導航為特色。為了實現安全高效的移動,商業交付、城市物流、行人及個人與公共交通都將各自有一條單獨的通道。

- 〈1〉在城市的表面上,將存在3種截然不同的路徑。1個用於自動機動性,另1個用於行人, 第3個用於行人和個人機動性。
- 〈2〉在地下,將有第4條專門用於貨物運輸的通 道,該通道也將安裝城市的物流網絡。

(二)巖谷芝公園加氫站:

- 1、Mirai Generation II由氫燃料電池供電,汽車產生的副產品僅有水,沒有排放二氧化碳,其原理是燃料箱中的氫氣與燃料電池堆空氣中的氧氣混合,氧氣與氫氣產生化學反應後產生電能,透過轉換器可供發電機使用,為汽車發動機提供動力。
- 2、日本目前共建置170家加氫站,巖谷加氫站是全日本最大的加氫站,一天約有40-50輛氫燃料電池車來加氫站加氫能。

Iwatani's Shiba Park Hydrogen Station

- Offsite-type hydrogen station
- Hydrogen supply capacity: 300 Nm³/h (about 6 FCVs per hour)
- Liquid hydrogen storage: 24 kl (enough for about 300 FCVs)
- Located in the central city, this hydrogen station is the most-used in the entire country
- In addition to passenger FCVs, it is also used to fuel FC buses, FC garbage collection trucks, and FC trucks
- Open year-round. Hours: 9:00 to 21:00
- Houses an adjacent Toyota showroom. Visitors can take a MIRAI for a test drive, or lease one.

圖11 巖谷芝公園加氫站

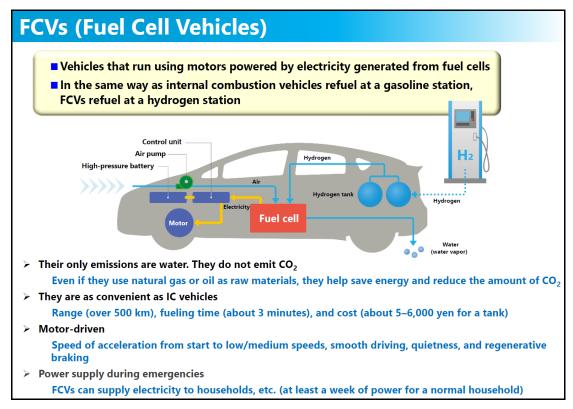


圖12 氫燃料電池車氫能轉換動力示意圖

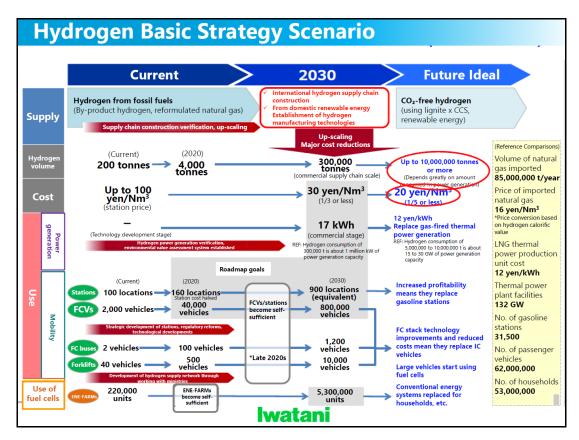



圖13 氫能基本策略計畫

- 3、大型車的部分,已有氫燃料電池公車,氫能垃圾車目前仍在實驗中,卡車、貨車預定於2022年12月進行實驗。相較於小客車加滿氫能約5公斤,需花費5分鐘,貨車需要的氫能更多約50公斤,加滿約需40分鐘,公車需要的氫能則約20公斤,加滿約需15分鐘,因此必須建置加氫專用站,方能符合大型車輛加氫及時間上的需求。
- 4、加氫站與一般加油站的規範完全不同,加氫站目前適用的規範是「高壓氣體保安法」,且加氫站建設成本很高,豐田汽車公司刻正與政府商討相關規定。美國對於建置加氫站有補助政策,日本則補助建置加氫站及其營運,以及補貼買氫燃料車。
- 5、氫能係以液體運送,運送過程並無安全導護。

(三)會晤及觀摩情形:

照片9 111/11/30 本考察團於巖谷芝公園加氫站旁 Mirai Showroom 合影

照片10 巖谷芝公園旁加氫站

照片11 汽車加氫情形

五、日立柏之葉智慧城市考察所得內容:

日本千葉縣柏市的政府、企業、學術機構攜手合作,以「環境共生城市」、「健康長壽城市」、「新產業創新城市」為課題,打造「世界未來形象」的柏之葉智慧城市項目,開展劃時代的城市建設,專案啟動伊始,日立公司就參與其中,通過「柏之葉區域能源管理系統」,在平時開展電力跨街區相互融通,做到有效減碳,實現能源資訊視覺化;在災害發生時優先向電梯、避難場所等關鍵場所提供電力,實現了地域能源的高效利用和監控。

本次係經由臺灣日立亞太股份公司的安排前往參 訪,會晤摘要如下:

(一)建構柏之葉的概念(智慧城市項目):透過地產開發商、自治體、大學、市民的共同協作研討新型態的社會,為了世界的未來,日本的課題,設定「環境共生」、「健康長壽」、「新產業創造」3個構建城市的方向。

圖14 柏之葉智慧城市建構方向

(二)柏之葉智慧城市,都市開發以鐵路沿線進行城市設計,分為三個階段,是國家級的示範事業。

圖15 柏之葉智慧城市整體構想

圖16 柏之葉智慧城市發展特點

圖17 柏之葉智慧城市協創概要

(三)柏之葉智慧城市的特點:區域內全面推動「創能」、 「儲能」和「節能」。柏之葉智慧城市是日本首例超 越街區電力交換,在城市中創造和儲存陽光等自然 能量,通過容納,高峰電力削減和二氧化碳排放, 可以高效、有效地利用本地能源。

圖18 柏之葉智慧城市的特點

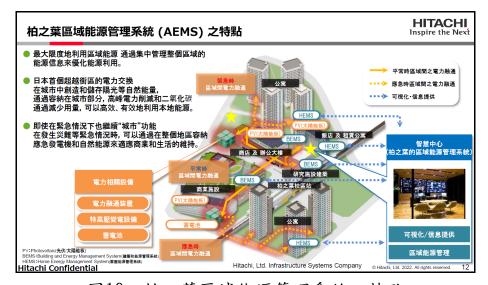


圖19 柏之葉區域能源管理系統之特點

圖20 柏之葉區域能源管理系統的價值

圖21 柏之葉智慧城市使用可再生能源

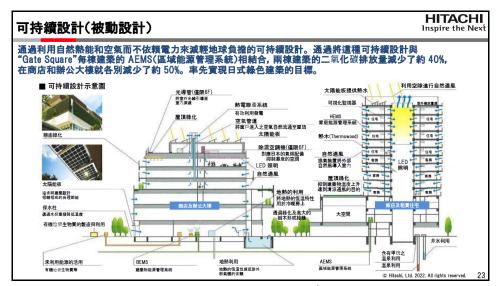


圖22 柏之葉智慧城市可持續設計示意圖

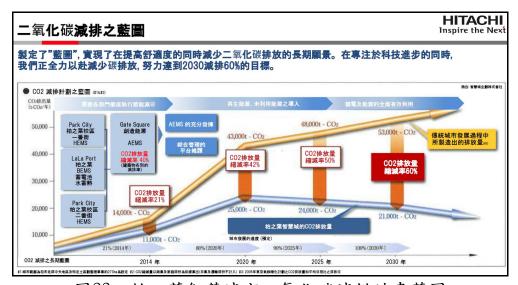


圖23 柏之葉智慧城市二氧化碳減排計畫藍圖

(四)柏之葉智慧城市取得LEED-ND:

LEED-ND取得

HITACHI Inspire the Next

- · 2016年由綠色樓宇協會(美國)所主辦的國際環境性能認證制度「LEED®」的 城市建設部門「ND (Neighborhood Development:近鄰開發)」的規劃認證中, 三井不動產和UDCK(城市設計中心柏之葉)取得最高級別「白金認證」
- ・ 同部門的白金認證在世界上有10個項目、 日本為首次
- ・ 認證對象面積42ha為最大規模
- · 主要評價重點
 - 公•民•學共同協作構建先進的城市
 - 在地理位置優越的地方實現不依存汽車的城市
 - 在柏之葉區域進行具有革新的活動
 - 緊臨生態系被受保護的自然公園
 - 新建築物等相關需要滿足一定要求的環境性能基準

未來構想圖(虛線内為認證對象)

LEED®—an acronym for Leadership in Energy and Environmental Design™—is a registered trademark of the U.S. Green Building Council®.

UDCK: Urban Design Center Kashiwa-no-ha

圖24 柏之葉智慧城市LEED-ND

(五)觀摩街區電力供給狀態監視室及變電箱區域:

- 1、據實地觀摩柏之葉智慧城市之148/150街區電力 供給監視畫面(禁止攝影),可顯示從東京電力所 購買的電力量、使用的電力量、排放的二氧化碳、 實際使用太陽能電力及蓄電池殘量等情況;基本 上日間不需使用所購買的電力,省下的電力可提 供夜間使用,如冬天用電超過購買的電力時,就 使用備用電力,融通電力是獲得政府許可,約占 整體電力10%。
- 2、據該電力供給監視室「電力可視化」畫面,可瞭解各區域設施的用電情況,亦有用電量提示,會設定減排目標,各區設施用電要低於目標,若達成減排目標,會回饋點數給各區域使用。
- 3、據該電力供給監視室「模擬災害時情況」畫面, 智慧城市儲存的電力可提供約3日用電量,以蓄電 池、太陽能來供電,發生災難時,會優先擷取商

店的電力來供應,辦公室的部分,由系統告知節電警示,區域內各項設施的電力,如公共電梯用電由內部電力來提供,另外使用水則取之地下水,食物亦有儲備。

- 4、整套系統由三井集團負責管理、操作,相關費用 向商店收取。
- 5、柏之葉智慧城市開發案推動共21年,分別是3個7年,第1個7年主要是辦理土地徵收,第2個7年是彙整住民需求意願、列出住民需求清單等,期間因逢東京大地震,發現當災難來臨時,電力、用水、食物等相關應變更為重要,爰檢討智慧城市應如何節能與儲能,以如何應對災難的規劃設計為主,據以調整並建立能源管理系統(AEMS);第3個7年則是落實造屋。
- 6、推動至今,整體電力於第2年起約可降10%,後續 開發希望電力比例能持續下降。目前柏之葉智慧 城市的電力仍以蓄電池來儲能,氫能在運送過程 中防爆性、安全性尚不穩定,且因氫能的成本高, 氫能電池仍以運輸載具為主,基於成本及安全上 的考量,住宅較少使用氫能。
- 7、智慧城市之儲電設備,蓄電池約可用10年。融電設備的電力,直流電、交流電需經轉換,並於降壓後傳送至家戶使用。
- 8、落實智慧城市的發展,困境在於推行上要適應各國法規、住民需求、IT部門如何配合等。
- 9、柏之葉智慧城市項目的開發區域正在進一步擴大。為了發揮在城市活動中累積的能源相關資料、健康醫療資訊、人口流動資訊等大數據的作用,日立也在為實現可持續化的舒適城市而努力不懈。

照片12 解說柏之葉智慧城市模型

照片13 柏之葉智慧城市電力消費及融通情形

照片14 111/12/01 本考察團與柏之葉智慧城市業務主管合影

肆、考察心得與建議

茲將考察發現日本作法,並參考實地考察所得內 容,整理考察發現及提出心得與建議如下:

一、近年自動駕駛科技已成為世界各國發展之重點,日本 因應無人自動駕駛所研擬之相關立法政策,可作為我 國推行自動駕駛及修法之參考

自動駕駛汽車(又稱為無人駕駛汽車)到底是什麼?依據經濟部技術處的說法²,就是搭載了許多精密的感測器,能自動感測周圍環境,並且無需人類干預而自動導航行駛的載具。依據美國國家公路交通安全管理局(NHTSA)提出之分類系統(2016年版),係以自動駕駛系統的參與程度,依序區分為0至5個等級,等級0即無自動駕駛功能,等級1有輔助自動駕駛功能、等級2係部分自動駕駛,等級3至5則交由系統監控;不過,

26

² 經濟部技術處官網:熱門焦點/產業技術知識/全球夯無人駕駛! https://www.moea.gov.tw/MNS/doit/content/Content.aspx?menu_id=34670

等級3是有條件自動駕駛,等級4為高度自動駕駛,等級5則為完全自動駕駛;是以依照車輛的構造與系統, 分別對應不同的自動駕駛情況。

基於自動駕駛汽車之自動化功能不一,倘若發生 事故,自動駕駛汽車行為及道路交通事故之責任應如 何釐清?究責對象為何?本次拜會日華議員懇談會古 屋圭司會長即表示,等級1至2的自動駕駛係藉助輔助 系統,倘若發生車禍,肇事責任在駕駛者本身。等級3 以上的無人自動駕駛,日本及美國等國家係將事故責 任歸屬於廠商,有些國家則是透過保險制度來承擔部 分事故責任,但最近也慢慢在轉型,例如Toyota、 Google等公司係採合作分攤方式。另觀日本因應自動 駕駛汽車所研擬之相關立法政策議題,除肇事責任歸 屬已予制定法律規範外,尚有:1.防止駭客劫持自動 駕駛汽車之舉措。2. 完善專用車道等之作法3。且日本 已於道路交通修正案列入在特定條件下實現等級4之 高度自動駕駛上路行駛,並預定於2023年4月1日施 行。反觀臺灣目前自動駕駛汽車相關法規尚停留於「實 驗測試性質」階段,自動駕駛汽車無法合法上路,亦 不利於自駕車產業發展,亟待研議解決對策;日本因 應自動駕駛汽車所研擬之相關立法政策,可作為我國 推行無人自動駕駛及修法之參考。

二、日本於全國地方優先推行自動駕駛汽車實驗,藉由自 動駕駛技術提升高齡駕駛之安全及行動便利性,我國 已進入高齡社會且高齡化時程較世界各國快速,日本 作法尚值我國參考借鏡

日本已進入高齡化社會,近年來高齡者造成的駕駛事故頻傳,政府為避免高齡駕駛人發生車禍,並協

³ 立法院法制局「因應自動駕駛時代之法制初探」, 106年6月。

助高齡者能擁有獨立行動的能力,規劃以自動駕駛技術解決高齡者駕駛的問題,降低高齡駕駛不穩定及不安全的風險;再者,日本人口集中於都會城市,地大口老化情形相當嚴重,加之公共運輸不盡便利,老年人的移動需求已受到影響,因此日本優先從地方推行自動駕駛汽車實驗,以三角錐引導的方式進行,赴目關設備由製造廠商負責維護與保養,目前日本已具備等級3的自動駕駛技術,並朝第4級目標邁進。

我國於107年已正式邁入「高齡社會」,相較於亞洲各主要國家,我國老年人口比率僅次於日本,惟據內政部107年發布之消息⁴,依國家發展委員會中華民國人口推估(105至150年)資料顯示,我國高齡化時程較世界各國快速,預估115年即進入超高齡社會。交通部雖已於106年實施「高齡駕駛人駕駛執照管理制度」,然而公共運輸相對完善的城市與未盡便利的地方鄉鎮,高齡者之旅運行為及移動需求完全不同,如何營造、完善並友善高齡者的交通服務,我國允應提早介入及重視處理。

三、日本長期研發氫能源之成果顯著,我國目前氫能技術 仍處研發與示範階段,同屬天然資源貧瘠國家,日本 作法殊值我國學習

近年氫氣能源被視為潔淨能源之一,逐漸成為世界各國競爭的重要綠色能源,至2022年,全球已有超過30個國家地區發布國家氫能策略。

睽諸日本於1970年代即成立「氫能源協會」,以大學研究為核心,展開氫能源相關技術之研發,此後,日本每年固定投入研發經費,於2002年與豐田汽車公司等車廠合作開發燃料電池展示車,並自2005年起展

⁴ 內政部發布「老年人口突破14%,內政部:臺灣正式邁入高齡社會」消息,107年4月10日, https://www.moi.gov.tw/News_Content.aspx?n=2&s=11663

開長期研發計畫,於2013年正式將發展氫能源訂定為國家政策,由國家主導氫能源之研發及推動⁵;為實現氫能社會,日本於2017年12月26日召開「第2回氫能與再生能源內閣會議」,以2050年的願景為未來展望,揭示「氫能基本戰略」,提出十大項基本戰略,確立至2030年的行動計畫與目標。嗣為達成「2050年實質零碳排」的目標,日本於2020年12月25日公布「綠色成長戰略」,選定14個「綠色成長戰略」重點領域,隔(2021)年2月新設「綠色創新(Green Innovation)部會」,檢討「綠色創新基金」營運管理基本方針⁶,且為推動綠色成長戰略,日本政府於2020年第3次補正預算中編列2兆日圓推動「綠色創新基金」事業。

再者,日本歷年的戰略與基本計畫目標及內容的 政策延續性相當高。誠如本次拜會多位眾議員即表 示,氫能此技術的發展,將使日本毋須再進口石油, 能保障國家安全等語。可見在綠色能源的競爭中, 上走在前列。反觀我國目前氫能技術仍處研發與示 範階段,亟待研議解決對策,同屬天然資源貧瘠的國 家,日本開發氫能源技術相關政策及作法,殊值我國 學習。

四、氫能車輛發展漸起,日本已開發氫燃料電池車,在加 氫站設置、氫能運送及現場作業人員安全規範等作 法,可供我國參考應用

為建設及實現「氫能社會」,日本汽車業加大力度研發各種氫能運輸工具。豐田汽車公司於2014年推出世界首款氫燃料電池車「MIRAI」(又稱未來車),於2022年推出第二代「MIRAI」,最高續航里程可達850公里,

⁵ 臺灣電力企業聯合會電子報「以日本的經驗看臺灣氫能經濟之發展」,第17期 (2019,11,15),http://www.tepa108.org.tw/EpaperHtm/20191115173423.htm

⁶ https://www.trademag.org.tw/page/newsid1/?id=7837411&iz=6

成本僅為第一代的1/3。

豐田汽車公司目前已設置170家加氫站,巖谷芝公園加氫站是目前規模最大的加氫站,本次實地觀摩瞭解發現加氫站設置成本很高,為擴充及普及加氫站,豐田汽車公司刻正與政府商討加氫基礎設施建設補助。氫能係以液體方式運送,目前適用「高壓氣體保安法」,惟為符合小型車、大小型車輛加氫實際需要,該加氫站負責人亦表示,未來有設置加氫專用站之必要。

有關民眾質疑氫能安全性的問題,透過本次拜會 日本眾議員表示,政府持續透過宣導讓民眾了解氫能 此項新技術,且豐田汽車公司已開發氫燃料電池車, 車輛售出愈多,民眾的接受度就會愈來愈高,另提及 日本政府應研議制定相關規範,指導現場作業及確保 工作人員之安全。基於氫能車輛發展漸起,日本推動 氫燃料電池車之相關作法,可供我國參考應用。

五、日本營造柏之葉智慧城市之整體性作法,可提昇資源 運用的效率,並改善改善市民生活品質,值得我國借 鏡推廣

臺灣許多縣市為解決各自城市的問題,皆已開始推動智慧城市(Smart City),例如臺北市於2007年起陸續推動數位政府與各類生活APP,新北市因人口為全台之冠,為維護社會安全,優先運用大數據情資破解犯罪熱點,另為維護居住安全,出動無人機巡查違章等,惟該等做法顯然多以解決某個問題為出發點。

而此次參訪柏之葉智慧城的發展狀況,經瞭解柏之葉智慧城市係透過地產開發商、自治體、大學、市民的共同協作研討新型態的社會,設定「環境共生」、「健康長壽」、「新產業創造」3個構建城市的方向,於區域內全面推動「創能」、「儲能」和「節能」,並利用

各種資訊科技或創新意念,整合城市的組成系統和服務,提昇資源運用的效率,優化都市管理和服務,以及改善市民生活品質,推動至今,城市整體電力於第2年起約可降低10%,用電量可望持續下降,城市項目的開發區域也正在進一步擴大。日本營造智慧城市的整體政策、有效作法及實驗成果,值得我國借鏡推廣。六、日本整備「首都圈外圍排水道」之後,大幅減輕侵水災害,顯著發揮了減洪減災的功效,面對極端氣候常態化及其產生的災害日漸嚴峻,我國亦應加快提升整體防洪及保護的能力

日本歷經13年歲月,於2006年整備完成「首都圈外圍排水道」,其規模為世界最大,有東京地下神殿之稱號;首都圈外圍排水道的主要功能集中庄和排水泵浦站,由「排水泵」與「控制室」「排水暗渠」等構成之泵浦站,主要承擔兩項作用,第一,藉助大型水泵和排水暗渠,將經由地下隧道流入調壓水槽的河水排放進江户川。第二,工作人員可以通過泵站的控制室,對各引流装置進行所需調控,實施統一管理,確保防洪系统安全運作。據官方統計,從部分開通後約18年之間共減輕了侵水災害約1,484億日圓的結果。

我國正持續推動「都市總合治水建設計畫」,據內政部營建署該計畫統計數據顯示⁷,截至111年7月31日止,共補助地方政府新臺幣135.35億元,執行452件都市排水改善工程,目前已有246件完工,增加都市雨水下水道等排水改善長度52.77公里及提升都市雨水下水道等排水改善長度52.77公里及提升都市雨水滞洪量約23.8萬立方公尺,尚有206件持續辦理中,預計至114年將改善全國都市排水設施長度達115公里,增加都市滯洪量60萬立方公尺等情。然而面對極

⁷內政部營建署2022年8月10更新「推動都市總合治水建設 營建署:提升整體防洪能力」, https://www.cpami.gov.tw/

端氣候常態化及其產生的災害日漸嚴峻情況,事前的 防災對策遠比災害的復舊為優,我國應加以警惕,加 快提升整體防洪及保護的能力,以減少侵水災害對人 民生命財產的損害。